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Abstract—In the San Francisco Bay Area, precipitation occurs 
in the wintertime, mostly as rain. Wintertime rainfall can be 
further classifed into cold or stratiform rain with a typical 
radar bright band signature and warm orographic rain with 
absence of a radar bright band. Vertical Pointing S-Band profler 
radar and disdrometer measurements from two of NOAA’s 
Hydrometeorology Testbed (HMT) sites in California are used 
to study the differences in microphysical properties between 
these two types of rain and their implications in radar rainfall 
estimation. A methodology has been developed to discriminate 
non bright band (NBB) rainfall from bright band (BB) rainfall 
using refectivity (Z) and differential refectivity (ZDR) computed 
from disdrometer data. Delineating the two rainfall types in 
this way allowed for an algorithm to be applied to the radar 
scans to identify rainfall types and apply appropriate refectivity 
based and specifc differential phase (KDP) based rainfall esti-
mators. Recently, a gap-flling X-Band weather radar with dual-
polarization capabilities was deployed in the San Francisco Bay 
Area in Santa Rosa to aid in weather monitoring and provide high 
resolution Quantitative Precipitation Estimation (QPE) products. 
When applied to real radar observations, this method shows 
great potential for improving the QPE compared to traditional 
operational products which more often tend to underestimate 
rainfall in the California coastal region. 

Index Terms—X-Band, dual-polarization, refectivity, differ-
ential refectivity, specifc differential phase, bright band, oro-
graphic, stratiform. 

I. INTRODUCTION 

ACCURATE estimation of precipitation is crucial for a 
variety of practical applications ranging from weather 

forecasting, food warning to water resources management. 
However, oftentimes the measurement accuracy is curtailed by 
various basic and applied science issues [1]. One such example 
is precipitation monitoring in regions of complex topography. 
Remote sensing of precipitation is commonly performed with 
weather radars, which can be ground based, airborne or space 
based [1]–[5]. This study focuses on Quantitative Precipitation 
Estimation (QPE) using a ground based X-Band weather radar 
over the coastal mountain region of San Francisco Bay Area. 
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Fig. 1. (a) A map of the northern region of the San Francisco Bay Area, 
highlighting the domain of the XSCW X-Band radar. The radar is located at 
Santa Rosa. The black circles represent radar range circles at every 10 km 
increment. The red crosses represent NOAA Hydro Meteorological Testbed 
(HMT) ground instrumentation sites, one at Santa Rosa (STR) and the other 
at Middletown (MDT). Each site contains a S-Band Profler radar, a Parsivel2 
disdrometer and a rain gauge. (b) shows the location of the MDT site relative 
to the radar along the line of sight azimuth direction along with the radar 
beam. (c) is same as (b) but for the STR site. 

National Weather Service operated S-Band weather radars or 
WSR-88Ds, in these types of regions, are often associated 
with inaccurate rainfall estimation due to a number of diff-
culties posed by the complexity of the terrain. A widespread 
fooding event at Oroville in Northern California in early 2017 
has demonstrated limitations of operational QPE and QPF 
products where rainfall estimates were greatly underestimated 
for that event [6], [7]. Several factors, such as radar beam 
blockage, radar beam overshooting, discontinuity in vertical 
profle of refectivity (VPR) and variation in Drop Size Dis-
tribution (DSD) limit the accuracy of rainfall measurement. 
Among these, DSD variability most signifcantly affects the 
mean relationships between rainfall and the radar observables. 
Cool season stratiform or Bright-band (BB) rainfall occurs 
when precipitation extends well above the freezing level and 
particles melt as they fall through the melting layer. As the 
particles melt and develop a liquid water coating on the 
surface, the radar refectivity at horizontal polarization is 
greatly enhanced thus producing a distinct peak in the vertical 
refectivity profle, also known as bright band. In contrast, 
orographic rainfall occurs by warm rain process when rainfall 
is shallow (below freezing) and enhanced by topography. In 
mountainous regions, usually, storms are strongly infuenced 
by orographic enhancements which in turn affects the intensity, 
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Fig. 2. (a) and (b) shows raw disdrometer observations at MDT and STR sites respectively from year 2016 to 2018 presented as fall velocity vs drop diameter 
color density plot. The solid black line denotes the ideal Atlas fall velocity vs drop diameter relation. The dashed black lines denote ±50% tolerance lines. 
(c) represents the Parsivel Conditional Matrix used for quality control purpose. The ideal Atlas fall velocity vs drop diameter relation and ±50% tolerance 
lines are shown in red. The region shaded in blue is considered as rain. The region outside shaded in yellow denotes no rain. (d) and (e) are quality controlled 
disdrometer observations at MDT and STR sites respectively. Here, again, the ideal Atlas fall velocity vs drop diameter relation and ±50% tolerance lines 
are shown in black. 

duration, and spatial variability of precipitation. This type 
of precipitation systems are often shallow, do not exhibit 
high echo tops and occurs mostly in lower levels of the 
atmosphere. Therefore, they are more often undersampled 
by the operational WSR-88D radars in this region due to 
beam overshooting at distant ranges [8]. Thus, orographic 
rain is associated with microphysical characteristics which 
are different from typical stratiform rainfall [9] and all these 
effects in combination poses a major challenge in radar QPE 
in complex terrain. 

[9] examined S-PROF observations from the strong El 
Nino winter of 1997-1998 at coastal mountain region near 
Cazadero in California. They observed that a signifcant period 
of rainfall manifested in absence of the radar Bright-band (BB) 
signature, which is a characteristic of winter stratiform rainfall. 
The authors pointed out this type of non Bright-band (NBB) 
rainfall is different from convective rainfall and accompanied 
with orographic enhancement. Collocated disdrometer obser-
vations further revealed that rainfall during this NBB period 
is associated with greater number of small drops and few 
large drops compared to BB period. [10] also pointed out 
this contrasting nature of drop size distribution in NBB rain 
periods and showed that it yielded an empirical radar rainfall 
Z-R relation at S-Band which is signifcantly different from 
the default ones used by NWS. [11] studied S-PROF data 
from southeastern USA HMT sites at New Bern and Old Fort 
during different winters and concluded the presence of NBB 
rainfall not only in mountainous coastal terrain but also in 

the relatively fat region where orographic forced rainfall is 
less likely. [12] also recorded occurrences of NBB rainfall in 
California’s fat central valley. These studies conclusively show 
presence of NBB rainfall in fat regions surrounding coastal 
mountains and the need of hybrid radar rainfall relations in 
order to capture the orographic precipitation accurately. 

Traditional radar based QPE approach uses radar refectivity 
(Z) for obtaining rainfall rate (R) [13], [14]. For example, the 
WSR-88D radars use several fxed Z − R relations according 
to different rainfall categories such as stratiform, convective, 
tropical and monsoon [15]. Rainfall estimators of this type 
can be suffcient in areas with a uniform DSD which do not 
vary much on spatial and temporal scales [16]. Additional 
utilization of polarimetric radar variables such as differential 
refectivity (ZDR) and specifc differential phase (KDP ) has 
been found to further enhance radar based QPE [17]. It 
has been established that KDP is dependent on forward 
scattering and scales with frequency under Rayleigh scattering 
assumptions. Furthermore, KDP is found to be less sensitive 
to radar beam attenuation, ground clutter contamination and 
unsubstantial variations in the DSD compared to Z. Studies 
such as [11], [16], [18] have adopted the use of KDP for QPE 
at X-Band and found higher effcacy for a variety of precipi-
tation regimes. [16] further demonstrated that KDP corrected 
Z − R relation provides improvement over using KDP or Z 
alone. Previous studies have also explored the use of hybrid 
estimators that uses a hydrometeor classifcation scheme to 
guide the application of appropriate rainfall estimators that 
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Fig. 3. Total drop counts vs drop equivalent diameter in NBB rain and BB 
rain at (a) MDT site and (b) STR site based on data from the 2016 - 2018 
rain seasons. The shaded region in (a) and (b) indicates the crossover between 
small and large sized drops. 

best fts the precipitation type [2], [19], [20]. However, in areas 
of complex terrain, especially in coastal regions, DSD is found 
to be highly variable on spatial and temporal scales as reported 
by [9]–[11]. Under such conditions, a fxed Z-R relationship 
can produce large errors since Z is highly sensitive to DSD 
variation [17], [21]. Regardless of having greater accuracy in 
comparison to Z-R based estimation, fxed R(KDP ) based 
rainfall measurements can also be affected by both spatial 
and temporal variation in the DSD in cases of orographic 
induced rain combined with stratiform rain. Changes in DSD 
governs the modifcations of coeffcients between rainfall rate 
and various radar observable. Hence, a fxed R(Z) or R(KDP ) 
can not reasonably represent the fne scale variability of the 
DSD. 

Previous studies have focused on radar based precipitation 
estimation, forecasts and validation of numerical models over 
the San Francisco Bay Area [22]–[27]. However, study radar 
based QPE for this region focusing on orographic rainfall 
has not been done yet. The main objective of this work is 
to determine a hybrid QPE algorithm that would support 
the Advanced Quantitative Precipitation Information (AQPI) 
System [28]. This algorithm would account for the infuence 
of NBB rainfall on polarimetric rainrate estimators at X-
Band and is also expected to improve existing QPE products 
in this region. In this study, collocated Parsivel disdrometer 
and S-PROF measurements from two NOAA HMT sites are 

used. The Santa Rosa site is located in the coastal plains 
in the Russian River valley whereas the Middletown site is 
located in the adjacent mountains. Microphysical characteristic 
of cold season stratiform or BB rainfall and orographically 
forced NBB rainfall are studied using rain events from 3 
years 2016 to 2018. DSD samples corresponding to rainfall 
delineated by presence and absence of bright-band is classifed 
into two broad categories namely BB and NBB. Further 
investigation revealed specifc characteristics of BB rain and 
NBB rain in agreement with previous studies as described 
above. Subsequently, DSD spectra are used to calculate radar 
variables at X-Band by T-Matrix scattering method [29]. An 
empirical relationship based on Z − ZDR is developed in 
order to differentiate between these two rain types that can be 
used on real X-Band radar data. Corresponding polarimetric 
radar rainfall estimators are also constructed. When applied to 
the X-Band radar data this method showed improvement in 
QPE compared to existing products. This study discusses the 
development of an accurate X-Band based QPE methodology 
focusing on orographic rainfall for the AQPI system, as well 
as the growing body of literature focusing on remote sensing 
of precipitation in complex terrain. 

This paper is organized in the following manner. Section 
II presents a detailed discussion on stratiform and orograhic 
rain followed by quantitative analysis of various datasets used 
in this study. Section III provides applications of dual polar-
ization radar rainfall estimation in stratiform and orographic 
rain followed by Section IV which presents QPE comparison 
results from selected case studies of precipitation events. In 
the end, Section V summarizes the QPE methodology for 
orographic rain presented in this study along with discussions 
on limitations and future scope of the proposed methodology. 

II. DATA AND METHODS 

A. Study Domain and Instruments 

The Advanced Quantitative Precipitation Information 
(AQPI) project is a joined effort by the California Department 
of Water Resources (DWR), Sonoma Water, the National 
Oceanic and Atmospheric Administration (NOAA), Cooper-
ative Institute for Research in the Atmosphere (CIRA) and 
a multitude of universities and local government agencies. 
It aims to improve weather monitoring, forecast, streamfow 
prediction, and coastal food warning in the San Francisco Bay 
Area. As a part of this project, a state of the art system has 
been developed that features gap flling X-Band dual polar-
ization radars and advanced surface observational instruments 
and fooding models [22], [28]. The AQPI domain spans over 
approximately 76300 km2 of area which covers most of the 
food prone watersheds in this region. The future goal is 
to develop an operational radar network consisting of four 
gap flling X-Band dual polarization radars and deployment 
of a C-Band dual polarization radar at the coast to observe 
approaching storms over the ocean. Recently, two X-band 
radars namely XSCW and XSCV have been deployed at Santa 
Rosa and Santa Clara respectively. These radars are expected 
to augment existing NEXRAD coverage and provide detailed 
understanding of rainfall processes. This study is focused on 
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the region of the Russian River watershed observed by the 
XSCW radar in Sonoma County, California. NOAA’s Hydrom-
eteorology Testbed (HMT) program, co-managed by OAR 
Physical Sciences Laboratory (PSL) and National Weather Ser-
vice (NWS) Weather Prediction Center, also includes several 
ground based observation sites in California. Most of these 
sites are equipped with tipping bucket rain gauges and optical 
disdrometers, while few of them also have a vertically pointing 
S-Band Profler (S-PROF) radars. 

TABLE I 
INSTRUMENT SITE INFORMATION 

Station ID Lat. Lon. Elv. (MSL) 
XSCW 38.5216oN 122.8022oW 38.5m 
STR 38.5154oN 122.8022oW 32m 
MDT 38.7456oN 122.7112oW 972m 

Figure 1a shows a terrain map of Sonoma County area 
along with location of the XSCW X-Band radar and NOAA 
HMT surface instrumentation sites. The black circles represent 
radar observation ranges starting from 0 to 40 km with 10 km 
increment. The red crosses represent two NOAA HMT sites 
named STR located at Santa Rosa and MDT located at Mid-
dletown. Both locations contain S-PROF, Parsivel disdrometers 
and surface observation gauges. Figure 1b and Figure 1c shows 
the XSCW radar beam along the line of sight azimuth direction 
of the two HMT sites. The azimuth and distance between the 
radar location and HMT sites is shown on the image. The STR 
site is located in the valley very close to the radar whereas the 
MDT site is located in the mountains near the eastern boundary 
of the watershed. The distance between the two sites is 27 km. 
Table I presents latitude/longitude and elevation information 
of all the sites. For analysis purposes, data from collocated 
Parsivel disdrometer and S-PROF radars at the STR and MDT 
sites are selected corresponding to the 2016 to 2018 rainy 
season. 

B. Rainfall Type Classifcation based on S-PROF Observa-
tions 

Stratiform rain occurs when when precipitation extends 
above the freezing level. In this type of rain, below 0o 

C, hydrometeors consist of aggregated snowfakes. As the 
aggregates fall and encounter the melting layer, they start 
to melt from the outside. At this point, frozen hydrometeors 
develop a outer coating of water and they appear to the 
radar as large drops of liquid. Since the radar refectivity 
factor is sensitive to the sixth power of the drop diameter, 
there is a large increase in ZH at the melting layer. It is 
also accompanied by decrease in both differential refectivity 
ZDR and co-polar coherency ratio ρHV . This phenomenon is 
known as the radar bright-band signature. Hence, stratiform 
rain is also termed as BB rain. Below this region, the drops 
completely melt to liquid and break into smaller drops due 
to aerodynamic instability. In contrast, orographic rainfall is 
associated with warm rain process when rainfall is shallow 
and enhanced by topography. In this case, precipitation is 
mostly present below the melting layer with the absence of 
large snowfake aggregates. A myriad of water drops grow to 

moderate sizes by condensation aided by up-slope fow and 
by coalescence of drops in a relatively shallow layer near 
the terrain. Orographic rain usually exhibits lower refectivity 
values compared to stratiform rain due to presence of large 
concentration of smaller drops. Due to the spherical nature 
of small drops, for this type of rain, differential refectivity 
values are very low (less than 0.5 dB) accompanied with very 
high correlation coeffcient. In this study, both the stratiform 
and orographic rain are found to be dominant in the Sonoma 
County region. [9] used vertically pointing S-PROF radar 
measurements to classify different rainfall types in half hour 
periods based of profle by profle analysis. The S-PROF radars 
generate measurements of vertical profle of refectivity and 
Doppler velocity with a spatial resolution of 60 meter and 
typically are updated every 1 minute interval. The different 
categories in that study were warm rain, cold rain, hybrid rain, 
and convective rain. If several different rainfall types were 
observed during a particular half hour period, the rain type 
with more clearly defned profles was assigned to the entire 
period. For analysis purposes, BB rain is considered a single 
category without subdividing it into cold and hybrid rain since 
both of these rain types exhibits bright band signatures. Warm 
or orographic rain on the other hand is considered as NBB rain. 
In the dataset considered for this study, the convective rain 
periods accounted for less than 5% of the total rainy period 
and therefore are excluded. As the bright band signature is 
usually obscured in convective rain, it can also be regarded 
as NBB rain. However, since convective rain is not examined 
in this study, the NBB terminology solely refers to warm or 
orographic rain. 

C. DSD Characteristics 

DSD spectra collected from disdrometers are useful in 
identifying bulk microphysical properties of precipitation. The 
NOAA HMT Parsivel disdrometers are confgured with a 
sampling resolution of 10 second. Each of these samples 
contains detected number of raindrops within the sampling 
interval which is arranged in a 32 by 32 drop size versus fall 
velocity matrix. This information represents the DSD spectra. 
The diameter size ranges from 0 to 25 mm with individual 
bin width increasing with the size from 0.125 to 3 mm. 
Detectable fall velocity values ranges is from 0 to 20 m/s with 
each bin width increasing with fall velocity. Detailed technical 
information about Parsivel disdrometers can be found in [30]. 
If each velocity bin is denoted by i and diameter bin is denoted 
by j then the total number of raindrops Dtot can be calculated 
as 

32 32XX 
Dtot = ni,j (1) 

i=1 j=1 

where ni,j stands for number of drops in each bin. In order 
to improve data reliability of the raw samples a series of 
data quality control procedure have been applied. First, each 
10 second sample are aggregated to 2 minute intervals to 
minimize random sampling errors. These 2 minute samples 
help to better comprehend overall rainfall characteristics. In 
addition, raindrops from the lowest two bins are rejected due 
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Fig. 4. Histograms of (a,d) Dm, (b,e) D0, and (c,f) log10Nw at the (top) MDT and (bottom) STR sites calculated from DSD data from the 2016 - 2018 
rain seasons. 

Fig. 5. Scatter density plots of log10Nw versus D0 in (a,c) NBB and (b,d) 
BB rain at the (top) MDT and (bottom) STR sites. The black dashed line 
signifes stratiform and convective separation based on equation 12 

to low signal-to-noise ratio. DSD spectra with total number 
of drops less than 20 as well as spectra with derived rainfall 
rate less than 0.1 mm/h are removed from the analysis [31]. 
Furthermore, raindrops of diameters larger than 8 mm are not 
considered in order to avoid hail contamination according to 
[17]. Finally, the empirical terminal fall velocity versus drop 
diameter (V-D) relationship by [32] is adopted to mitigate 
contamination introduced by strong horizontal wind gradient 
and partially melted hydrometeors. 

−0.6DV (D) = 9.65 − 10.3e (2) 

Velocity measured by the disdrometer is compared to the 
Atlas relation in equation 2 for each diameter bin. Drops with 
measured velocities within a ±50% error are considered for 
further analysis. All of the above data quality control methods 
are applied to essentially restrict data to rain samples only. A 

Fig. 6. Scatter density plots of ZDR versus ZH in (a,c) NBB and (b,d) BB 
rain at the (top) MDT and (bottom) STR sites, calculated from the 2 minute 
DSD samples using T-Matrix scattering method. 

total of 63,033 raw samples were studied out of which only 
36,421 samples passed the quality control criteria. Figure 2 
shows disdrometer data from 2016 to 2018 at STR and MDT 
sites before and after the quality control process. The number 
concentration of raindrops per unit volume for the jth diameter 
bin can be calculated according to 

32X ni.j
N(Dj ) = (3)

AΔtViΔDji=1 

−3 −1where N(Dj ) is in m mm ; Dj is the jth diameter bin in 
mm; A is the sampling area of the disdrometer which is 0.0054 
m2; Δt is the sampling time interval which is 120 seconds; 
ΔDj is the width of jth diameter bin in mm; Vi is the value 

−1of fall speed for the ith velocity bin in ms . Rainfall rate R 



6 

Fig. 7. Classifcation of NBB versus BB rain in ZDR versus ZH space using 
the empirical relation in 13 denoted by a black curve. (a) ZDR versus ZH 
scatter density plot for BB rain samples computed from DSD data from STR 
and MDT sites combined (b) Same as (a) but for NBB rain samples. It should 
be noted that only grid points with sample density greater 50 are considered. 

(mm h−1) can be calculated based on N(D) as 

32X 
R = 6π × 10−4 V (Dj )Dj 

3N(Dj )ΔDj (4) 
j=1 

where V (Dj ) is the velocity at the jth diameter bin calcu-
lated using 2. Furthermore, a normalized gamma DSD model 
frst reported by [33] has been adopted in this study for 
calculating the median volume diameter D0 (mm), mass-
weighted mean diameter Dm (mm), and intercept parameter 

−3Nw (m mm−1). The normalized gamma DSD can be 
described as " #� �µD D 

N(D) = Nwf(µ) exp − (4 + µ) (5)
Dm Dm 

Here, f(µ) is given by 

6(4 + µ)µ+4 

f(µ) = (6)
44Γ(µ + 4) 

where µ is the shape parameter and Γ is the Euler Gamma 
function. Dm can be expressed as a ratio of the fourth-order 
moment of N(Dj ) to the third-order moment of N(Dj ) as 
follows: 

Dm = 
m4 (7) 
m3 

where the nth-order moment mn of N(Dj ) is defned as 
32X 

mn = Dj
nN(Dj )ΔDj (8) 

j=1 

The median volume diameter D0 is defned such that drops 
smaller than D0 contribute to half the total liquid water content 
W (g m−3) as follows Z D0 1 

Z ∞ 

D3N(D)dD = D3N(D)dD 
20 0 
1 

= (W ) (9)
2 

It is also related to Dm as 
D0 3.67 + µ 

= (10)
Dm 4 + µ 

Nw is calculated as � �44 103W 
Nw = (11)

π D4 
m 

It should be noted that rainfall accumulations of individual 
events from 2016 to 2018 for Parsivel disdrometer data and the 
collocated tipping-bucket type rain gauges were generally in 
agreement to within 10%−15%. A close agreement of Parsivel 
rainfall rate retrievals and those from the robust 2D video 
disdrometer measurements was also reported by [34]. These 
gives an additional indication of the suitability of using the 
Parsivel disdrometer data. The quality controlled DSD samples 
are classifed into BB and NBB rainfall categories according 
to the simultaneous observations from the collocated S-PROF 
at STR and MDT site. Figure 3 represents total drop counts 
vs drop equivalent diameters at both sites. In this study, drops 
below 1.5 mm diameter are considered as small drops. Drops 
of diameter between 1.5 - 3 mm are considered as mid-sized 
drops and drops greater 3 mm are considered as large drops 
according to [30], [35]. It is observed that NBB rain has a 
higher frequency of small rain drops at both sites, while BB 
rain has a higher frequency of mid-sized to big drops. The 
crossover from small drops to mid-sized and larger drops is 
between 0.75 - 1.15 mm drop diameter for both sites. There 
is a bigger separation from mid-sized to large drops at STR 
compared to MDT. In addition, MDT has a higher number 
concentration of smaller drops compared to STR suggesting 
dominance of orographic process due to abrupt lifting of air 
by local mountainous topography. These features are further 
demonstrated by the probability distribution of mass-weighted 
mean diameter Dm, median diameter D0 and normalized 
intercept parameter Nw in Figure 4. In this fgure, BB rain 
is denoted by blue and NBB rain is denoted by orange. D0 

and Dm both have similar positively skewed distributions in 
BB and NBB rain. It can be seen that, although there is 
some overlap, NBB rain in general has a higher probability 
of smaller drop diameter compared to BB rain whereas BB 
rain has a higher probability of bigger drop diameter. The Nw 

distribution of NBB rain is negatively skewed at both sites 
while the distribution of Nw in BB rain is symmetric. This 
supports the fndings in Figure 3 that NBB rain has higher 
concentration of overall drops counts compared to BB rain. 
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Fig. 8. Rainfall Rate R versus Specifc Differential Phase KDP from disdrometer observations at the STR and MDT sites combined (a) for NBB rain samples 
(b) for BB rain samples (c) for both BB and NBB rain samples considered together 

Fig. 9. (a-b) Images of S-PROF radar Signal to Noise Ratio (SNR) at the STR and MDT site for October 20 2021 precipitation event. The black dots in 
bold represent the S-PROF radar derived snow level. The thin black dashed lines represent the NEXRAD KDAX beam heights. These images are taken from 
the website ”https://psl.noaa.gov/data/obs/datadisplay/”. (c-d) Classifcation of BB versus NBB rain at the STR and MDT site using dual-pol XSCW radar 
observations for the October 20 2021 precipitation event. The black and light blue solid lines represent observed ZDR and threshold ZDR which is calculated 
using equation 13 respectively. Periods of BB rain is shaded in blue while NBB rain is shaded in red. 

Figure 5 presents scatter density plots of log10Nw versus D0 

for BB and NBB rain at the two sites. The black dotted line 
is used to separate stratiform region from convective region in 
the log10Nw versus D0 sample space [36], [37]. The equation 
of line is given by 

log10N
sep = −1.6D0 + 6.3 (12)w 

where Nsep indicates the threshold value of Nw for classifying w 
stratiform rain from convective rain corresponding to a median 
volume diameter D0. As expected, almost all samples fall in 
the stratiform region. In summary, it can be concluded that, 
NBB rain observations at both sites exhibit higher concen-
tration of smaller drops compared to BB rain. For both rain 
type the mean values of D0 are larger at MDT compared 
to STR. Dominance of orographic enhancement at MDT is 
clearly indicated due to a higher concentration of small drops. 

III. DUAL POLARIZATION RADAR APPLICATIONS 

Even though it is relatively straightforward to distinguish 
BB rain from NBB rain using profles of Z and Doppler 
velocity observations from vertical pointing proflier radars, 
it is a bit challenging to perform the same classifcation using 
PPI scans in case of weather radars. Previous works by [38]– 
[40] focused on bright-band detection and VPR correction 
using polarimetric scanning radar data. [11] demonstrated the 
possibility of using polarimetric radar variables at S-Band for 
identifying BB and NBB rain types. However, polarimetric 
relations at X-Band has not been explored yet. This study 
focuses on developing a robust methodology for delineation 
of stratiform or BB rain from orographic or NBB rain that 
can be applied to scanning X-Band radar data in real time. 

https://psl.noaa.gov/data/obs/datadisplay
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Fig. 10. Comparison of different rainfall products with rain gauge at the STR site for the October 20 2021 precipitation event. (a) Rainfall Rate using hybrid 
R(KDP ) vs gauge rainfall (b) Rainfall Rate using a single R(KDP ) relation vs gauge rainfall. (c) Cumulative accumulation of hourly rainfall at the STR 
rain gauge location from different rainfall products. 

Fig. 11. Comparison of different rainfall products with rain gauge at the MDT site for the October 20 2021 precipitation event. (a) Rainfall Rate using hybrid 
R(KDP ) vs gauge rainfall (b) Rainfall Rate using a single R(KDP ) relation vs gauge rainfall. (c) Cumulative accumulation of hourly rainfall at the MDT 
rain gauge location from different rainfall products. 

A. Classifcation of BB and NBB rain type using dual-pol 
radar parameters at X-Band 

Polarimetric radars are sensitive to drops shapes. Higher 
concentration of small drops in NBB rain signifes the dom-
inant drop shapes observed in radar resolution volume will 
be more spherical than in BB rain. Hence, polarimetric radar 
has potential to detect different rain types as well as provide 
more accurate estimates of rainfall intensity than usually pos-
sible with single polarization measurements [17]. In Rayleigh 

scattering, the particle sizes are much smaller compared to 
the radar wavelength. In this case, the radar refectivity factor 
can be shown approximately equivalent to the sixth moment 
of the drop size distribution. However this assumption often 
time fails in the case of large drops at a wavelength of 
3 cm corresponding to X-Band. Therefore, in this study, 
dual polarization parameters specifc differential phase KDP 

(deg.km−1) and differential refectivity ZDR (dB) along with 
refectivity at horizontal polarization Z (dBZ) were computed 
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Fig. 12. Rainfall Rate R versus Refectivity Z in BB and NBB rain 

Fig. 13. Location of rain gauges within the 40 km range domain of the 
XSCW radar usde for validation purposes in this study. These rain gauges are 
maintained by the Sonoma County Water Agency 

using the T-Matrix scattering method [29]. Quality controlled 
two minute DSD samples classifed into BB and NBB rain 
are used for the computation assuming a Gamma distribution. 
Drops are assumed to be symmetric with orientation canting 
angle following a Gaussian distribution with zero mean and 
standard deviation of 5o . The drop shape model described in 
[41] has been used. The calculated Z and ZDR in BB and 
NBB rain from DSD samples at both sites are presented in 

Figure 6 in form of scatter density plots. It can be observed the 
distributions of ZDR vs Z are signifcantly different for NBB 
compared to BB rain. The Z and ZDR values for BB rain are 
higher compared to NBB rain. About 95% of the ZDR values 
for NBB rain are less than or equal to 0.5 dB suggesting larger 
fraction of smaller spherical drops. A polarimetric approach 
is implemented for identifying NBB rain and BB rain based 
on the observed ZDR versus Z pattern. As observed from 
the ZDR versus Z plots in Figure 6, it is apparently diffcult 
to distinguish the two rain types by a single Z or ZDR 

threshold due to some overlap of BB and NBB samples. About 
15% of the total samples are overlapped in the region of 
8 dBZ ≤ Z ≤ 36 dBZ and 0.35 dB ≤ ZDR ≤ 0.6 dB. 
This can be better visualized in the Figure 7 which is a scatter 
density plot of ZDR vs Z computed from the disdrometer 
samples from STR and MDT sites combined. This fgure is 
constructed with pixels of sample density exceeding 50 in 
order to clearly visualize the difference in distributions. An 
empirical relation given by the equation 

Zt = 0.0047Z1.35 (13)DR 

is proposed based on a ft to the data. It can be observed 
from Figure 7 that the black curve represented by equation 
13 is able to separate the BB and NBB rainfall types. For 
a given value of Z the threshold ZDR value for BB-NBB 
separation is denoted by Zt If the observed ZDR value DR. 
is greater than this threshold, it is classifed as BB rain and 
the opposite is true for NBB rain. In Figure 7, about 85% 
of the rain samples of either rainfall type can be accurately 
classifed by equation 13. However, the classifcation of the 
remaining 15% samples is ambiguous due to sample overlap 
which is discussed earlier. It is emphasized that this approach 
is only applicable to radar observations of rain where there is 
no contamination from mixed phase and ice hydrometers. 

B. Dual-pol rainrate estimators for BB and NBB rain type at 
X-Band 

Rainfall rates R are retrieved by summation of individual 
rainfall rate at each disdrometer’s diameter bin using equation 
4. The calculated KDP values and the corresponding rainfall 
rates from the DSD data are segregated for the two types of 
rain. Scatter density plots of R versus KDP were made to 
get an overall trend of the rainfall rates compared to KDP . 
This is shown in Figure 8a and b. The distributions were then 
ftted using an exponential curve which yielded two distinct 
equation. These two R(KDP ) estimators are given by 

= 18K0.8RBB DP 

RNBB = 23K0.6 (14)DP 

Since most of the KDP values for the two types of rain are 
less than 1 deg/km, a lower exponent, as in the case of NBB 
rain estimator, means higher rainfall rate compared to the BB 
one. Figure 8c shows the density plot between rainfall rate 
versus KDP when both BB and NBB samples are considered 
together. An exponential ft is also made to this distribution 
which is given by the equation 

R = 17K0.7 (15)DP 

https://0.0047Z1.35
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TABLE II 
SONOMA COUNTY WATER AGENCY RAIN GAUGE LOCATION 

Gauge ID Lat. (deg.) Long. (deg.) Location 
’40200’ 38.406656 -122.651431 Matanzas Reservoir 
’40201’ 38.482242 -122.672988 Brush Creek 
’40202’ 38.479830 -122.740988 Piner Creek 
’40203’ 38.440170 -122.648364 Spring Creek 
’40204’ 38.457047 -122.657442 Spring Lake 
’40206’ 38.506803 -122.723863 Linda Creek 
’40207’ 38.362584 -122.525253 Sonoma Creek 
’40208’ 38.413978 -122.657462 Matanzas Creek 
’40209’ 38.549400 -122.720072 Mark West Creek 
’40210’ 38.583716 -122.671742 Franz Creek 
’40211’ 38.329098 -122.547601 McCrea Trail Parcel 
’40212’ 38.669962 -122.742251 Buckeye Creek Ranch 
’40213’ 38.535928 -122.701547 Mark West 

Regional Park 
’40215’ 38.523822 -122.743892 Shiloh Ranch 

Regional Park 
’40216’ 38.492002 -122.717053 Skyfarm Water Tank 
’40217’ 38.467749 -122.712766 Paulin Creek 
’40218’ 38.458215 -122.510119 Bald Mountain 
’40219’ 38.511754 -122.724335 Mark West Creek 
’40220’ 38.570609 -122.694050 Pepperwood Preserve 
’40221’ 38.372593 -122.572176 Enterprise Road 
’40222’ 38.439661 -122.708967 Santa Rosa 

Downtown Culverts 
’40223’ 38.332678 -122.629408 Copeland Creek 
’40225’ 38.465531 -122.704673 Piner Creek Dam 
’40226’ 38.486643 -122.672493 Brush Creek 

Middle Fork Dam 
’40227’ 38.499188 -122.896077 Mirabel 
’40228’ 38.442742 -122.887214 Green Valley 

It is interesting to note that this exponential ft is quite 
different from either of NBB and BB rains. The exponent 
lies between that of NBB and BB equations suggesting that 
it is an overall average ft. To demonstrate the signifcance 
of the hybrid R(KDP ) estimators on QPE, an orographic 
precipitation event on Oct 20, 2021 is chosen for analysis. 
Figure 9 shows BB vs NBB classifcation at the STR and 
MDT sites following the method developed in this study. 
Figure 9a and 9b are images of the S-SPROF radar SNR 
at the STR and MDT site respectively. The image is taken 
from the NOAA PSL web display. Figure 9c and 9d shows 
time series of measured ZDR at the two sites. The black 
line depicts observed ZDR whereas as the light blue line 
denotes the ZDR threshold calculated from the relation in 
equation 13. The blue shaded periods correspond to BB rain 
whereas the orange shaded periods corresponds to NBB rain. 
The classifcation based on X-Band dual-pol observations in 
Figure 9c and d is found to be consistent compared to the S-
PROF observations. Occurrence of BB rain can be observed 
approximately until around 06:00 UTC, after which it is all 
NBB rain. The hybrid R(KDP ) estimator is applied according 
to the rainfall type classifcation and subsequently rainfall 
accumulations are calculated for each hour for the whole event 
at both sites. Hourly rainfall accumulations are also calculated 
using the average R(KDP ) relation, given by equation 15. 
The radar estimates are compared against the tipping bucket 
rain gauges present at both sites. In addition, two operational 
QPE products namely the MRMS MultiSensor Pass1 and 
MRMS RadarOnly are also compared. Detailed description 
of the MRMS products can be found in [20] and [42]. 

Both of these operational products provide hourly estimates 
of rainfall over the CONUS. Figures 10 and 11 both show 
comparison of the hourly rain gauge measurements with radar 
rainfall estimates computed using equations 14 and 15. It is 
interesting to note that, both in fgures 10b and 11b that the 
hourly rainfall estimates calculated using the average R(KDP ) 
slightly overestimates during the BB periods with signifcant 
underestimation during the NBB periods. In contrast, the radar 
estimates using the hybrid R(KDP ) estimators, as shown in 
fgures 10a and 11a, performs very well. This can be observed 
in the rainfall cumulative accumulation comparison in fgures 
10c and 11c. Both of the MRMS QPE products as well as the 
rainfall estimate using average R(KDP ) tends to signifcantly 
underestimate. 

Oftentimes, at very low rainfall rate the estimated KDP 

from radar observations of differential phase can be very 
noisy. In addition, KDP can be affected by bright band 
contamination when the lowest radar scans are intersected by 
the melting layer being very close to the ground [17]. In these 
scenarios, it is not advisable to use KDP for estimating rainfall 
and use Z instead. In case of bright band contamination, 
appropriate correction of the refectivity vertical profle should 
be performed before using R(Z) estimator. Thus, apart from 
the R(KDP ) relations, R(Z) relations for both BB and NBB 
rain are also developed using the disdrometer measurements. 
They are given by 

= 0.15Z0.43RBB lin 

= 0.3Z0.41RNBB lin (16) 

6where Zlin is refectivity in linear units (mm m−3). Figure 
12 present the R(Z) estimators. 

IV. EVALUATION USING CASE STUDIES 

Observations from the XSCW X-Band radar have been 
used to test the performance of the hybrid rainfall relations, 
developed in the previous section, against independent rain 
gauges. The radar is located in Santa Rosa and provides PPI 
scans starting at elevation of 1.5o and ending at 4.5o with 
1 degree intervals. This radar observed several orographic 
precipitation events in the year 2021. For comparison purpose, 
three signifcant events are chosen consisting of low, moderate 
to heavy rainfall accumulations. The frst event is from January 
27-28 2021 which produced moderate rainfall amounts. During 
this event, the environmental freezing level was very close to 
the ground which was about 1 km. The other two events are 
from October 20 2021 and October 24 2021. Both of these 
events had signifcant orographic enhancements as observed by 
the S-PROF radar. The October 24 2021 event was the highest 
rainfall producing event of the year in this region, whereas the 
October 20 2021 event exhibited lower rainfall rates compared 
to the other two events. Radar based rainfall estimates are 
compared with simultaneous measurements from rain gauges 
maintained by Sonoma County Water Agency (SCWA). There 
are a total of 26 rain gauges which are used in this analysis. 
Figure 13 shows the location of the gauges within the radar 40 
km range domain. Table II shows the different SCWA gauge 
IDs along with their location and geographic coordinates. The 

https://0.3Z0.41
https://0.15Z0.43
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Fig. 14. Comparison between cumulative accumulation of hourly rainfall for whole event at SCWA (a,d) gauge ID 40212 and 40223 for the January 27-28 
2021 event, (b,e) gauge ID 40225 and 40215 for the October 20 2021 event, and (c,f) gauge ID 40212 and 40209 for the October 24 2021 event. Blue line 
indicates the AQPI XSCW radar product using hybrid rainfall estimation algorithm, the yellow line indicates the MRMS Multisensor Pass 1 product and the 
orange line indicates the MRMS RadarOnly Product. 

TABLE III 
STATISTICAL METRICS 

Mean Bias (mm) Mean Absolute Error (mm) Root Mean Square Error (mm) 

Jan 27-28 2021 
R-KDP Hybrid 

MRMS MultiSensor Pass1 
-0.17 
-1.78 

6.78 
10.37 

10.00 
13.00 

MRMS RadarOnly -22.78 22.00 26.20 

Oct 20 2021 
R-KDP Hybrid 

MRMS MultiSensor Pass1 
0.48 

-12.08 
2.92 
12.11 

3.75 
12.8 

MRMS RadarOnly -14.32 14.32 15.13 

Oct 24 2021 
R-KDP Hybrid 

MRMS MultiSensor Pass1 
-3.6 

-71.89 
19.6 
71.89 

22.99 
75.93 

MRMS RadarOnly -123.42 123.42 125.4 

All events 
R-KDP Hybrid 

MRMS MultiSensor Pass1 
-1.15 
-28.86 

8.91 
31.79 

12.76 
45.44 

MRMS RadarOnly -54.24 54.24 75.10 

methodology developed in this study frst classifes rainfall 
into BB and NBB category using Z and ZDR observations at 
each radar range gate. It very crucial that both Z and ZDR 

should be well calibrated and free of systematic bias. The 
bias estimation is performed by comparing Z calculated from 
the STR disdrometer measurements and the actual observed Z 
by the radar. Since the dual-pol radar variables are calculated 
from the disdrometer observations using a computed scattering 
table, they are regarded as true values. The mean Z bias for 
all the 3 events was found to be -5 dBZ indicating the radar Z 
is lower by 5 dBZ. Therefore, an adjustment of +5 dBZ was 
applied. For ZDR bias, two methodologies were followed. The 
frst one is a comparison with disdrometer which was carried 
out in a similar manner like the Z bias estimation. The second 
one is performed by the method of observation of drizzle at 
very low elevation angle. In this study observations from the 
lowest PPI scan angle of 1.5o was used. In order to select 
drizzle, both Z and ZDR was masked with signal to noise 
ratio (SNR) greater than 15 dB and correlation coeffcient 
(ρHV ) greater than 0.99. In addition, only Z values between 

0 and 15 dBZ are considered. With these criteria, ZDR values 
are selected for bias estimation. In theory, the ZDR in this 
scenario should be a Gaussian with a mean of 0 dB. Any 
deviation from the 0 dB mean is taken as the bias. For all 
the three events, the mean ZDR bias was found to be 2.5 dB 
from the two individual procedures mentioned above. Next, 
the classifcation methodology is applied to radar scanning 
data collected at 2.5o elevation angle. Radar data from the 2.5o 

elevation are used because this is the lowest elevation at which 
there is no beam blockage at the gauge sites. As mentioned 
earlier, since the freezing level was close to the ground (at 
around 1 km from the mean sea level) for the January 27-
28 2021 event, the radar beam at 2.5o elevation intersected 
the melting layer bottom at ranges 16 km and beyond from 
the radar location. A vertical profle correction algorithm was 
used to project the radar refectivity contaminated by BB 
to the ground level according to [40]. The hybrid R(KDP ) 
estimators were used for ranges closer to the radar whereas 
hybrid R(Z) estimators were used for ranges beyond 16 km 
where the radar beam was contaminated with BB. The freezing 
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Bias, Mean Absolute Error, and Root Mean Squared Error. 
Assuming the rain gauge measurements as the ground truth, 
each score can be defned as following 

N 

MB = (Rn 

X1 − Gn) (17)
N 

n=1 

Fig. 15. Scatter plot of event total rainfall accumulations from XSCW radar 
using hybrid R(KDP ), MRMS MultiSensor Pass1, and MRMS RadarOnly 
with all SCWA rain gauges. The black line denotes 1:1 line. (a) January 27-28 
2021 event. (b) October 20 2021 event. (c) October 24 2021 event. (d) All 
events combined. 

level during the October 20 and 24 events were about 2.5 km 
and about 3.5 km from the mean sea level respectively. The 
2.5o radar center beam height at 40 km from the radar location 
is about is 1.85 km. Therefore, only R(KDP ) estimators 
were used for these two events. Rainfall accumulations were 
calculated using hourly rainfall estimates. Figure 14 show 
comparisons between X-band radar rainfall estimates, SCWA 
rain gauge measurements, and the operational MRMS products 
in terms of cumulative hourly accumulation for the three 
events at selected SCWA gauge locations. It should be noted 
that all rain gauges within the radar domain were used in 
evaluation but only few gauges are shown in the fgure for 
brevity. It can be observed in Figure 14 that the X-Band 
radar rainfall accumulation matches quite well with the gauge 
estimates in terms of total rainfall accumulation. The MRMS 
RadarOnly product which is based on WSR-88D S-Band 
observations are found to greatly underestimate precipitation 
relative to the rain gauge values. The MultiSensor Pass 1 
product’s performance varied from gauge to gauge. It is worth 
noting that the MultiSensor Pass 1 product at few gauge 
locations performed better than the X-Band estimates during 
the January 27-28 2021 event. The reason behind it could be 
attributed to the fact that the January event has the least amount 
orographic enhancement among the three events. Given this 
scenario, the product performs quite well at gauge locations 
which are probably closely located to the ones used in the 
inherent gauge correction scheme of the MultiSensor Pass 1 
Product. In order to gain more insight into the overall QPE 
performance the event total accumulations were compared 
and presented in form of a scatter plot. Figure 15 presents 
a scatter plot of event total rainfall accumulations between 
different products versus all rain gauges. A performance metric 
is presented in Table III in terms to statistical scores of Mean 

N 

MAE = (Rn 

X1 − Gn) (18)
N 

n=1 vuut XN 

N 
n=1 

where Gn and Rn 

1 
RMSE (Rn − Gn)2 (19)= 

denote the rain gauge and radar rainfall 
measurement at each rain gauge location respectively. N is 
the total number of rain gauges. A negative mean bias indi-
cates overall underestimation. It can observed that the hybrid 
R(KDP ) has small negative mean bias (not exceeding 3.6 
mm) overall indicating very little underestimation compared 
to the MRMS products. The mean absolute error gives an 
idea of the magnitude of underestimation or overestimation. 
When all three events are considered together the overall mean 
absolute error is less than 9 mm and the root mean squared 
error is less than 13 mm which is reasonable when compared to 
the MRMS products. Between the three products, the MRMS 
RadarOnly has the worst performance in terms of all of the 
three scores. Overall, the performance of the QPE using the 
X-Band hybrid R(KDP ) estimator is the best compared to the 
MRMS products. 

V. SUMMARY AND DISCUSSIONS 

Precipitation, in the San Francisco Bay Area, is more 
often orographically enhanced by the presence of mountains. 
Previous studies such as [11], [12] have also documented 
observations of orographic rain in the fat valley regions where 
orographic induced rainfall is less likely. In this study, two 
NOAA HMT sites are considered. The MDT site is located 
in the mountain while the STR site is located in the valley 
region. DSD characteristics at these two sites were studied 
and evaluated based on collocated disdrometer and S-PROF 
observations, refecting a combination of rainfall processes 
including bright-band rain with robust ice processes and sub-
sequent melting and non-bright band rain dominated by warm 
rain collision coalescence below the melting level. Orographic 
rain, which is referred in this study as NBB rain, is found 
to have characteristics signifcantly different than BB rain. It 
has a higher concentration of smaller drops which are less 
than 1 mm in diameter. NBB is mainly characterized with 
lower Z and KDP values when compared to BB rain. Upon 
comparing the radar parameters with disdrometer rainfall rate, 
it is observed that NBB rainfall is associated with a higher 
rainfall rate corresponding to the same Z and KDP values in 
BB rain. Due to this reason, application of an average radar 
rainfall relation (derived from DSD data when rainfall types 
are not distinguished) could lead to substantial underestimation 
of radar based QPE for periods observing NBB rainfall. Even 
polarimetric rainfall estimators using average or traditional 
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coeffcients can not provide suffcient accuracy. Given this 
scenario, there is a need to improve radar based QPE in 
complex terrain based on methods which can identify NBB 
rain from BB rain using dual-pol parameters and apply rainfall 
estimators specifc to rainfall types especially NBB rain. To 
this end, a Z − ZDR threshold is developed in this study 
which is able to distinguish NBB rain from BB rain and 
can be applied to radar scan data in real-time. There is 
some overlap of samples in the Z − ZDR space between 
the BB and NBB rain which could be mainly due to two 
reasons. The frst is due to the parameterization error which 
can be improved by more sophisticated techniques such as 
machine learning based classifcation. The other possibility 
for the overlap of samples can be related to the presence 
of an intermediate rain type known as hybrid rain. This 
rainfall type is discussed in detail in [9]. Hybrid rainfall is 
found to have characteristics of both BB and NBB rain. It 
is suggested that an investigation of the hybrid rainfall type 
and its inclusion in the algorithm development could yield 
further improvement in radar based QPE in complex terrains. 
However, this type of rainfall is not studied separately in this 
work. The radar rainfall estimators, such as R(KDP ) and 
R(Z), are calculated for BB and NBB rain types separately. 
The coeffcients for NBB rainfall estimators are signifcantly 
different than the BB rainfall estimators. An average R(KDP ) 
relation, considering both BB and NBB rain together, is also 
developed. It is demonstrated that an average relation results in 
overestimation in BB periods and signifcant underestimation 
in NBB periods. This is one of the main reasons for developing 
the proposed radar based QPE algorithm in this study. It is 
well known that KDP possesses signifcant advantages in 
radar based rainfall estimation at X-band. Moreover, R(KDP ) 
parameterization error is less than that of refectivity based 
estimator. However, in case of bright band contamination 
R(KDP ) is not suitable. For this reason, R(Z) estimators 
are also derived for BB and NBB rainfall type and should 
be used in conjunction with VPR correction in bright band 
contaminated regions. Other polarimetric estimators such as 
R(Z, ZDR) and R(ZDR,KDP ) can be developed as well but 
not discussed in this study. Care should be exercised before 
application of the polarimetric algorithm on radar data in real 
time. Since ZDR is an important parameter in the NBB rainfall 
classifcation and estimation, it should be well calibrated. 
Biased ZDR could lead to faulty QPE estimation using the 
algorithm suggested in this work. This can be considered as a 
drawback of this algorithm. There are techniques in literature 
which can be used for ZDR bias correction using PPI data by 
either observing drizzle at low elevation scans for by observing 
dry snow at higher elevations. ZDR calibration, using one of 
these techniques, should be checked frequently. In addition, 
both Z and ZDR can be calibrated in real time using collocated 
disdrometer observations. Three rain events with different 
storm total accumulations from the year 2021 are considered 
for algorithm evaluation. Application of the algorithm on 
XSCW radar data demonstrates good performance against 
the rain gauge estimates. The performance is also contrasted 
against operational MRMS products such as MultiSensor Pass 
1 QPE and RadarOnly QPE. Lower performance metrics of the 

MRMS products can be accounted for the following reason. 
Current radar based precipitation identifcation algorithm used 
in the MRMS products only aim at differentiating stratiform 
rainfall from convective rainfall [43]. Orographic rain identif-
cation and application of specifc rainfall relations is suggested 
for improving MRMS QPE accuracy in areas of complex 
terrain. In conclusion, this study suggests a possibility of a 
more accurate X-band radar based QPE that accounts for 
changes in rainfall type in the San Francisco Bay Area region. 
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